The conjecture relates representations of Gal(Qbar/Q) and modular forms. The "level 1" case of this has been proved by Chandrashekhar Khare, "by carrying out a strategy he had worked out in collaboration with Jean-Pierre Wintenberger, and using results by Luis Dieulefait and others". This apparently breaks " a psychological barrier".
In the following we shall attempt to present, somewhat concisely, the statement of this conjecture. For a pedagogical article suitable for (advanced) high school students, click here (postscript format).
Let us get a few terms defined: Everyone knows what a field is;
- the field G of Gaussian numbers is the set {a+bi, a,b rational} and that Aut(G)=Z/2Z (observe that since polynomials are inv under Aut, i-> -i)
- the set of algebraic numbers A, i.e., those that are roots of polynomials also forms a field and what about Aut(A)=? - this is the question. For instance, all finite order elements in Aut(A) are order 2 !
Finite Fields and Local Fields
No comments:
Post a Comment